
17089

2022/2023

Engineering
Portfolio

17089

#17089

Table of Contents
1. Introduction 3

1.1. Team members 3

2. Engineering 5
2.1. Intro 5
2.2. Motor mounts - drivetrain 5
2.4. Chassis triangles 5
2.3. Odometry mounts 5
2.5. End effector - Grabber 7
2.8. Side plates 8
2.9 Linear manipulator (scrapped) 9
2.10 New manipulator 9

3. Programming 9
3.1. Intro 9
3.3. Tele OP 10
3.4. COne sleeve detection 11
3.5. Encoders & Odometry 12

1. Introduction

1.1. Team members

Petr kužela
Since my childhood, I have enjoyed building and tinkering with LEGO. The creative and
constructive skills have nicely transferred into designing robots for FTC. I hope to
continue my creative development into my future profession.

Oliver Škařupa
Working part mostly in engineering, but doing some coding as well. I am proud that we
used our experience from previous seasons to improve upon our workflow and learn from

17089

our mistakes. I am the biggest fan of the CAD program OnShape due to its collaborative
features. My favorite thing about Robotics is the necessity for teamwork and
collaboration that leads to unique solutions for every team.

Daniel Strnad
I was a weird child… I’ve always preferred to build Lego exactly according to the manual.
And that endured until I was able to make my own Lego bricks.. Thanks to robotics. It
simply satisfies my engineer heart to model a part in OnShape and then see it being
materialized into a real thing.

Martin Libor Matura
Ever since I was a kid, I have always been fascinated with technology. That is why I
immediately jumped at the opportunity to join the robotics team, so that I can pursue and
express my passion.

Rostislav Janovský
This is my second year in Powered by Redstone. I really enjoy learning new stuff, even
though it is sometimes really hard. It is amazing that we have a chance to work on our
own robot, so I wanted to be a part of it. The best thing about robotics is the freedom of
designing and building.

Tomáš Jirmann
From a very young age, I knew that I wanted to be an engineer. Starting from my
fascination with LEGO bricks as a small child and continuing with my passion for
designing in OnShape today. I am very grateful to be a part of the robotics team because
I feel like it gives a higher purpose to engineering as my hobby.

Powered by Redstone

Team Powered by Redstone is a Czech FTC team that consists of members studying at
Open Gate School in grade ten, eleven and twelve. Open Gate has been mainly a
language school in the past, but it has decided to promote STEM fields during the recent
years. Our robotics team serves as one of the ways to achieve this goal. As a part of this
project, our team is extensively supported and funded by our school and we were given
our own academic club and a full workshop.

17089

Open Gate is a fairly small school, as it has only about three hundred students. Even so,
we have 6 active members with occasional help from others. All of our members are
passionate about robotics in general, and many of us would like to pursue the goal of
working in the field of engineering. As a result, even though our school schedules are not
ideal, we are still meeting at least once a week in the late afternoon to actively work on
the robot. Furthermore, our members are willing to sacrifice their free time in order to
work on our robot during the week or even during weekends. We are taking part in FTC
for the fourth year with previously participating in two tournaments hosted in Barcelona.

2. Engineering
2.1. Intro

Last year was full of challenges, including team management difficulties and a general
lack of a concise vision for the robot. For the Power Play season, we decided to build the
robot around a specific vision: to build the most modular robot, which can be upgraded,
modified and have its parts replaced in minutes.

2.2. Motor mounts - drivetrain
Inspired by last year's challenge, where the preferred strategy was to make the chassis
of the robot thinner, we decided to bring the vision of modularity to the chassis itself. To
properly achieve this, we had to think outside of the box (within robot boundaries, of
course). Whereas most chassis of robots have their mecanum wheels oriented like a car
might, with the faces of the wheels facing to the sides, we embraced the true nature of
the omni-directional wheel and mounted the wheels facing the front and rear. While
keeping the full range of motion, this allowed us to keep the motors and the side
odometry wheels mostly within the profile of the mecanum wheel, freeing up a lot of
space in the middle of the robot.

17089

Every component on each side is mounted on a single REV robotics metal extrusion, with
another extrusion connecting them. This allows us to change the dimensions of the robot
with ease, only by sliding individual parts of the chassis within said extrusions. The
mecanum wheels are mounted directly onto motors, which we found suitable for our
design, as gearboxes would unnecessarily hinder the modularity of the chassis. To
ensure that the load onto the motors is properly transferred to the chassis, we use
custom brackets to connect the motor to the extrusion in multiple places.

An example of the modularity of this design is that when we found the spaces between
the junctions to be very tight for drivers, we shrank the robot by multiple centimeters in
width, so that we can navigate the field more easily,

2.3. Chassis connection
To take full advantage of the space unlocked by our motor layout, we decided not to
connect the robot at both front and rear, as the
space inside the robot could be used to handle
game elements. Therefore, we had to come up
with a way to connect the chassis at the rear. The
solution we adopted was to 3D print large plastic
brackets, which we would reinforce using metal
extrusions. It was also essential that the part did
not allow the chassis to flex during operation. To
ensure the security of the connection, we used
an excessive amount of bolts, which were
fastened under tension (the chassis was forced
together at the front). This allowed us to decrease frontal oscillations from 3 mm to 1 mm,
which we find acceptable as a tradeoff for the increase in manipulation space. The

17089

extrusions in the brackets also allow for mounting of electronics and other functional
parts of the robot.

A downside that we found to having the robot be U-Shaped is the tendency to mount
functional elements and electronics at the rear. This leads to an unbalance in load
distribution between front and rear wheels, causing driving difficulties. The solution is
simple, as the modular nature of the robot allows elements of the robot to be
re-positioned on the chassis. Moving the electronics to the front to offset other functional
elements fixed all our balance issues.

2.4. Odometry mounts
In order to know the precise position of the robot on the playing field, we needed to
implement odometry encoders. The solution was placing three encoders reading data
from their independent wheels.
To increase data accuracy, we created a custom 3D printed odometry design with a
separate suspension system. Each encoder is set up to be pushed into the ground by
rubber bands in order to maintain constant contact with the ground, even when driving
over irregular terrain. Our first design is outlined in figure 2.6/a. Two axles are mounted
to the robot’s chassis using a simple part. The odometry encapsule is then slid on the two
axles and attached using rubber bands. The rubber bands pressure the odometry wheels
into the ground and therefore maintain contact with the ground even when driving over
irregular terrain. With this solution, the code can fully rely on position data from our
odometry encoders, and use that for advanced control of the robot’s movement.

17089

However, this solution did not work as well as we had hoped. There were many problems.
The first big issue was with the odometry wheels moving sideways because the hole for
the axles was too big. If we made the hole smaller, the axles wouldn’t be able to slide
easily. This turned out to be a major problem for this design.

After coming up with some new ideas, we decided that the
best solution is a redesign of the odometry suspension.
The new design uses only the part that attaches to the
encoder and holds the wheels. This design has sliding
axles attached to the wheels positioned vertically. The two
axles slide in a rig attached to the main chassis of the
robot. This solves our problems because it allows the
odometry setup to only move vertically with almost no
side movement.

Comparison of
designs

First design with horizontal axles Final design with vertical axles

Positives ● Low profile- allows for parts above it
● Rubber bands can be attached easily

● No travel in any directions
except for vertical

● Adjustable pressure on
wheels

● Easier to assemble

Negatives ● Some side movement
● Can move freely on the Y axis of the

robot.

● Rubber bands must be tied
around hole

2.5. End effector - Grabber

The grabber assembly began with finding a

mechanism to hold the cones using one smart

robot servo. We developed two clamps

attached to gears - so the clamps would move

specularly.

17089

With the first prototype of clamps, we started to develop the part to hold them together

and to attach the mechanism to the rest of the robot.

We modified the attachment mechanism. The first prototype was very bulky, so we have

decided to rework the whole thing to be as light as possible. Figure below shows the first

and final prototypes of our holder

However after first testing the part,

it had one critical flaw. The plastic

extrusion fitted on Smart servo

shown on Figure 2.5.b was

abrased by the torque produced by the

servo. We decided to solve this by using a

more sturdy aluminum piece on the servo

gear and thus increase the radius from the

axis of rotation and avoid application of pressure on fine plastic faces. Figure above

shows the development of servo-clamp attachment in CAD. The grip of the clamps was

solved by application of silicone.

2.8. Side plates
When the side plates were designed, we had to invent a mechanism to attach them to our

chassis. We aimed to create an easily removable mechanism, while fulfilling the modular

complexion.

Firstly, we solved the attachment at the rear by inserting it into the

structural bracket. The mount itself therefore serves a structural role in

the robot. For the front holders, we used an extrusion in the back side of

the side plate with corresponding insertion point on the H shaped side

plate mount.

When everything was ready for printing, we found out that our halves

of side plates were still too large to fit on our 3D printer. This challenge

has been solved by changing the angle of cut and the sideplate

assembly could finally have been printed. However, that was when new

challenges arose. Due to material bend, which was not taken into

account in the CAD model, the side plates were positioned too low to

make the robot operable. Thanks to the clever design of both side plate

17089

holders, the vertical position of side plates can be easily manipulated, so we are able to

change between designs of holders for two possible heights within minutes. The same

thing would be possible with X positioning thanks to the highly modular

nature of side plate holders while keeping the side plates themselves the

same. Figure on the left shows the modularity along z-axis of back side plate

holder (dark blue) and front side plate holder (light blue)

2.9 Linear manipulator (scrapped)
Our first idea for creating a mechanism for lifting cones on the poles was to

create a linear lift. This lift would be created with REV robotics parts and

operated by winding string around a wheel. We wanted to have one lift on

each side of the robot to improve stability and a grabber mechanism

mounted on top that would hold the cones during the lifting movement.

However, when we created this concept in reality, the lift had too much

friction, and could not be lifted smoothly. After trying some fixes to reduce

friction, we ended up deciding on completely scrapping the design and trying

something different.

Our next idea was to utilize sliding ball bearings in between REV extrusions that would

reduce friction. However, when we created a prototype for this sliding motion, the ball

bearings were not contained securely. In the end, we decided to scrap linear motion and

change our plans.

2.10 New manipulator
The new manipulator design consisted of an arm lifted by a chain driven mechanism that

allows the cone to be lifted to the desired height in one movement. Attaching the static

part of the arm securely to the chassis of the robot was a difficult problem to tackle. To

reduce any unwanted movement in the arm, we designed and 3D printed a custom

extremely rigid mounting part that secured the extrusions together with an abundant

amount of screws. This ensured that the lift and chassis are connected tightly and

completely eliminated any movement in the pivot of the arm.

Another challenge was driving the arm. We chose to use chains and gears to create a

desired gear ratio. However, the high amount of torque induced on the plastic gear

17089

created issues. To fix this, we needed to modify metal REV High Strength Hubs to

reinforce the gears.

3. Programming
3.1. Intro

If you take engineering as the body of our robot, then by that analogy, programming
would be the brain. The code makes the robot act. Starting from simple actions, like
driving around the field and lifting cones, to more complicated ones like calculating
trajectories and analyzing camera images. This year we decided to tackle a big task of
creating our own odometry algorithm. With this algorithm, our autonomous mode will
become way more precise and it will also simplify many actions for our drivers in TeleOp.
Our mentor Daniel Lessner also plays a crucial part in our team. With his PhD in computer
science, he provides valuable insight and makes our lessons very educational.

3.2. Set-Up
From the beginning of our team we always used Android Studio for developing our robot.
We also decided to use Android Studio because we wanted to have more flexibility with
the repository as this year we created our own image recognition algorithm for detecting
the cone sleeve position using OpenCV.

Furthermore, we use the linear op mode classes to develop our op modes. The process
began with forking the new repository provided by First on Github and setting it as our
own repository we can all collaborate on through Git and Github. Furthermore, we use 2
Motorola G5 phones that communicate through Wi-Fi direct to control our robot.

3.3. Tele OP
At the beginning of the year, we made the commitment that the most important part of
the tele op mode to us is driving. This is for one reflected in the effort that went into our
chassis. Furthermore, the first thing we focused on as programmers was the mecanum
wheels gamepad control algorithm. The basis is a field-relative mecanum drive algorithm.

Because our robot is equipped with 3 dead odometry wheels (more on them later), we
can easily and precisely track the position and more importantly rotation of the robot at
any time. Thanks to this, creating the field-relative drive algorithm was not a difficult task
at all. currPos is an array of 3 double values that store the robot’s x, y and rotational
position and therefore, currPos[2] gives the angle at which the robot is currently rotated
from its starting position. turnCoe and speedCoe are coefficients that we introduced into
the code to boost or downplay some inputs and thus allow for both higher precision and
higher velocities when needed.

17089

3.4. COne sleeve detection
A crucial part of the autonomous period in this season is being able to correctly detect the
orientation of the cone sleeve, and then park the robot in the according area. Performing
this task correctly with a custom created signal sleeve will yield 20 points, which is why
we knew from the beginning that this is something we want to focus on, so that we can
score these 20 points consistently in competitions.

In the previous seasons, we used an outdated and very limited camera OpMode library to
access the outputs from the RC phone camera directly and then analyze the images. This
year, we changed our approach and decided to learn to use OpenCV for camera detection.
The learning process came with its challenges at first, however, through practice we soon
became proficient in using the library with all its features that were relevant for us.

Once we were capable of using OpenCV to our advantage, it came time to think about the
algorithm that we want to use to detect the orientation of the cone. OpenCV is not the
best tool for image recognition, but it is great at image processing, which is why we
decided to design our custom sleeve so that each side would mostly consist of one color,
and as such, after getting the average color of the pixels when scanned, the side of the
cone sleeve could be easily distinguished. After brainstorming ideas, we landed on the
decision that the algorithm would first locate the cone in the image by searching for a
consistent row of red pixels. Once it found a row of red pixels that would satisfy some
preset conditions to be considered the base of a cone (mainly length), the entire cone
would be outlined by a rectangle formed based on the base line of red pixels. Then, the
only remaining step is getting the average color inside the rectangle and checking which
side of the cone sleeve the average color is closest to.

When it came to implementing this algorithm, the part of detecting the base of the cone
proved to be more challenging than we expected. We unfortunately could not find a way
of consistently detecting the base row, as the algorithm kept getting distracted in the

17089

gray field floor. Even after trying to convert the image into every possible color space and
trying to detect the red line through looking at every possible parameter, we were unable
to create a version of the algorithm that was consistent enough. Even after trying
different approaches such as measuring changes in red pixel values across rows or
checking numerous rows above each other, we still couldn’t produce a result that we were
satisfied with, not to mention that the pipelines took way too long to execute anyways.

For this reason, we finally made the decision to hard-code the position of the cone within
the camera image and commit to relying on precisely positioning the phone in the same
way every time. Somewhat interestingly, this process proved to be much more reliable
than any of our previous attempts at detecting the base of the cone, and so we stuck with
it. Now, all that the algorithm does is take the average rgb values within the predefined
rectangle and check whether the resulting average is the most red, green or blue. Below
is a screenshot of the main part of this algorithm:

3.5. Encoders & Odometry
In order to track the position of our robot on the field, it is equipped with 3 dead odometry
wheels that are connected to REV Through Bore encoders. We created our own odometry
algorithms for tracking the robot’s position and moving target points, which we will
describe below.
To calculate the displacement of the wheel that the encoder is attached to, it is important
to know the diameter (d) of the wheel, for the circumference (C) to be calculated. 𝐶 = 𝑑π
Furthermore, as in the previous example, I will assume that the encoder disk has 360
contacts so that one rotation translates to a number of 360. The current number of
contacts made will be represented by the variable a. Therefore, the displacement traveled
(dt) by the wheel can be calculated by using the equation of: The variable is 𝑎

360 * 𝐶 = 𝑑𝑡

divided by 360 to get the fraction of how much the disk has been rotationally displaced.
Later, when multiplied by the circumference, the variable (dt) for displacement is
obtained.
For the parallel wheel tracking, arcs can be used to calculate the change in displacement.
It is important to mention that even driving in a straight line can be considered a
movement in an arc with a radius of infinity.

17089

The figure demonstrates an example of how wheel displacement can be expressed
through an arc of length. The computer that will be doing the calculations, will use the
values from the encoders every amount of milliseconds (depends on the speed of the
computer). Therefore, the algorithm will be calculating the change in displacement
between two instances in time or also called “frames”.

The central displacement dC is equal to the average of dR and dL. 𝑑
𝐶

=
𝑑

𝑟
+ 𝑑

𝐿

2

The equation for theta works out to be: Theta is the angle the robot turns θ =
𝑑

𝑅
−𝑑

𝐿

𝐷

during the frame.

There are some relations that should be pointed out. Firstly, a quadrilateral is made of the
two radii and the two tangent lines. Therefore, two right angles are present in the
quadrilateral. Making the angle relation: α = θ

2

Now, using right triangle trigonometry, it is possible to find delta X and delta Y by
assuming that is the hypotenuse. This estimate is usually enough to achieve optimal
precision as the computer can do these calculations hundreds of times per second.
Therefore, in a time frame of a few milliseconds, the arc traveled is so small that it can be
considered a straight line. However, over a longer period of time the error from this
assumption could begin to accumulate and become significant. The tracking should be
maximally precise and this is especially relevant if a slower computer is used.
Fortunately, using mathematics, the exact value of the hypotenuse can be found

17089

By knowing and it is possible to find by using the cosine rule. θ 𝑟

𝐶

 𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 𝑐𝑜𝑠𝐶
In this case of an isosceles triangle, and are equal to . 𝑎 𝑏 𝑟

𝐶

 ℎ = 2𝑟2
𝐶

− 2𝑟2
𝐶
𝑐𝑜𝑠θ

However, it is important to check whether is equal to 0, which means the robot is θ
driving straight, as otherwise h would then equal 0 as well. The algorithm checks if θ
equals to 0 and if it does, then h set to . When the robot is driving straight, is a 𝑑

𝐶
𝑑

𝐶

straight line and therefore, is the same as h.
It is important to add the initial angle , which is the angle the robot was oriented in, at Φ

𝑖

the beginning of the time frame, in order to preserve the previous changes in orientation
of the robot.

 ∆ 𝑥 = ℎ × 𝑐𝑜𝑠(Φ
𝑖

+ α)

 ∆ 𝑦 = ℎ × 𝑠𝑖𝑛(Φ
𝑖

+ α)

Perpendicular third wheel correction
As described before the robot has a third perpendicular tracking wheel in the middle.
Because this wheel is exactly in the middle and is perpendicular, it does not rotate when
the robot turns or drives straight. However, if the robot is pushed to the side or the robot
is using mecanum wheels that allow it to drive sideways, then the two parallel wheels are
unable to detect that. But, the third perpendicular wheel detects this shift.

As seen in figure 8, dS and h can be considered vectors. Because the wheel is placed
perpendicularly to the two parallel wheels vectors dS and h are also perpendicular.

17089

When a right angle triangle with dS as a hypotenuse is drawn the angle at the beginning
of the vector dS is the same as the angle alpha, shown previously. Therefore, to account
for the additional displacement, the shift of the robot adds to the overall displacement,
basic right angle triangle trigonometry can be used almost in the same way as with the
parallel wheels. The only difference is the switch of cos and sin because as seen in figure
8 the angle faces the x displacement axis.

 ∆ 𝑥
𝑠

= 𝑑
𝑆

× 𝑠𝑖𝑛(Φ
𝑖
 + α)

 ∆ 𝑦
𝑠

= 𝑑
𝑆

× 𝑐𝑜𝑠(Φ
𝑖
 + α)

So, when updating the global x, y and coordinates of the robot in a cartesian system, Φ

both the parallel wheels and the perpendicular wheel’s tracking information has to be
added, together with the displacement from the last calculation:

This math is implemented in the following
function which we use to update the robot’s
position based on dead-wheel encoder inputs:

https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%20a%7B360%7D%5Ctimes%20C%3Dd_%7BR%20%5Clor%20L%20%5Clor%20S%7D#0
https://www.codecogs.com/eqnedit.php?latex=d_C%3D%20%5Cfrac%7Bd_R%2Bd_L%7D2#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta%3D%5Cfrac%7Bd_R-d_L%7DD#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%20%3D%5Cfrac%7B%5Ctheta%7D2#0
https://www.codecogs.com/eqnedit.php?latex=h%3D%5Csqrt%7B2r_C%5E2-2r_C%5E2cos%5Ctheta%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20x%3D%20h%5Ctimes%20cos(%5Cphi_i%2B%5Calpha)#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20y%3D%20h%5Ctimes%20sin(%5Cphi_i%2B%5Calpha)#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20x_s%3D%20d_S%5Ctimes%20sin(%5Cphi_i%20%2B%20%5Calpha)#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20y_s%3D%20d_S%5Ctimes%20cos(%5Cphi_i%20%2B%20%5Calpha)#0
https://www.codecogs.com/eqnedit.php?latex=y%20%3D%20y%20%2B%20%5CDelta%20y%20%2B%20%5CDelta%20y_s#0
https://www.codecogs.com/eqnedit.php?latex=x%20%3D%20x%20%2B%20%5CDelta%20x%20%2B%20%5CDelta%20x_s#0

	Table of Contents
	1. Introduction
	1.1. Team members
	

	2. Engineering
	2.1. Intro
	2.2. Motor mounts - drivetrain
	2.3. Chassis connection
	2.4. Odometry mounts
	
	2.5. End effector - Grabber
	2.8. Side plates
	2.9 Linear manipulator (scrapped)
	2.10 New manipulator

	3. Programming
	3.1. Intro
	3.3. Tele OP
	3.4. COne sleeve detection
	3.5. Encoders & Odometry

