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1. Introduction 
 

1.1. About us 

 
1.1.1. Team members 

 
 

Team leaders  

Bertram  Škařupa  
I have been programming since the age 
of 14, but I found my true love for it 
when I started programming the robot 
and it was beautiful to see my code 
execute something physically! 

 

Petr Dobiáš 
Even since I was a kid, I enjoyed being 
creative. I used to play with all kinds of 
construction kits and make contraptions. 
I think these experiences translate into 
what we do in robotics.  

 
Engineering 

Petr kužela 
Since my childhood, I enjoyed building and tinkering with LEGO. The creative and 
constructive skills have nicely transferred into designing robots for FTC. I hope to 
continue my creative development into my future profession.  
 
Josef Schneider 
Since I was a kid I was interested in building, mostly Lego, but I always wanted to try 
something more challenging. For me personally helping with building a new robot is 
very relaxing and also helpful with my fine motor skills. 
 
Mili Macková  
I really admire my team members who are very passionate about what they do, as they 
lead the team and create an amazing and enthusiastic atmosphere during each 
meeting. 
 
 
 

3 



 

Šimon Mirek Jakub Mráz 
I first thought that joining the team would be just something to fill my free time. Yet as 
soon as we got into working on the robot. I realized it fills me with joy to be near the 
robot and to see how we progress with the work. 
 
 
Oliver Škařupa 
This year, I joined the engineering team to learn how to create 3D models in the 
program Fusion 360. One of the biggest opportunities of the Robotics team is 
collaborating with many team members on a single large project. 

 

 

Programming 

Jáchym Doležal 
I have always loved creating and building stuff. I am a creative person who loves 
learning new things. I joined this team at its early beginning.  
 
Martin Libor Matura  
Ever since I was a kid, I have always been fascinated with technology. That is why I 
immediately jumped at the opportunity to join the robotics team, so that I can pursue 
and express my passion. 
 
Sára Nováková  
I have always admired the robotics team and the amazing things they work on together. 
Therefore, I decided to try something new this year and join the team myself, so that I 
can learn some new skills. 
 
Sofie Popova  
I only started with programming recently and I was looking for an opportunity for 
developing the freshly gained skills, my love for problem-solving and sharing this 
passion with other people in the field of my interest. When I first heard of the school 
robotics club, it seemed like a brilliant chance for me. 
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Powered by Redstone 
 

 
Team Powered by Redstone is a Czech FTC team that consists of members 

studying at Open Gate School in grade ten, eleven and twelve Open Gate 

has been mainly a language school in the past, but it has decided to 

promote STEM fields during the recent years. Our robotics team serves as 

one of the ways to achieve this goal. As a part of this project, our team is 

extensively supported and funded by our school and we were given our 

own academic club and a full workshop.  

Open Gate is a fairly small school, as it has only about three hundred 

students. Even so, we have over 10 active members with occasional help 

from others. All of our members are passionate about robotics in general, 

and many of us would like to pursue the goal of working in the field of 

engineering. As a result, even though our school schedules are not ideal, 

we are still meeting twice a week in the late afternoon to actively work on 

the robot. Furthermore, our members are willing to sacrifice their free time 

in order to work on our robot during the week or even during weekends. 

We are taking part in FTC for the third year with previously participating in 

two tournaments hosted in Barcelona. This was our very first experience, 

from which we also much learned. We hope that all of our effort and work 

will pay off in this year's challenge. 

 

For season 2020/2021, we unfortunately spent the vast majority of the 

season in lockdown, meaning we couldn’t work on in person and test our 

robot only until two weeks before the  online competition organized in 

Spain. Even so, we managed to produce possibly the best robot to date. 
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2. Engineering 
2.1. Intro 

This season, for the first time, we have had access to a 3D printer from the 

beginning of the designing process. This allowed us to redirect our focus 

from figuring out the methods to utilise stock components and freed us to 

think outside of the box to develop custom components. This possibility 

proved to be essential, when the COVID-19 lockdown started. Being 

schooled from home, we did not have access to our workshop. However, 

we continued to design our robot in Autodesk's Fusion 360. Having the 

possibility to custom-design and 3D print most of our rigid components, 

we had a very comfortable transition from in-person sessions to online 

sessions.  

 The general vision was to make the custom components angular 

wherever possible.  

6 



 

2.2. Chassis 
 This year we chose to make use of the similar chassis frame as last year - 

a simple H shape made of standard tetrix shafts. The only difference from 

last year’s structure is that we use one shaft across the frame instead of 

two (as seen in figure 2.1.). 

The main purpose of this change is to allow enough space for a ramp that 

transports rings towards the launcher.  

Overall, this chassis design was chosen because we wanted it to have the 

following characteristics: 
○​ Rigidity - it needs to be able to bear the stresses that the weight of 

the launcher presents 

○​ Drive motor placement - we needed the motors to be out of the way 

so that we can fit a ramp that transports rings to the front part of 

the robot. 

○​ Wiring friendly - the hollow structure of the tetrix shafts allows 

cables to fit inside it. This prevents the wiring from disturbing the 

visual appearance and functionality of the robot 
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2.3. Powertrain 
This year, we wanted two improvements for our robot form last year. 

1.​ Faster robot - more speed 

2.​ All motors to be in one location​  

The two requirements were solved this year by transferring the power 

from the motor to the wheels using belts. We wanted to increase the RPM 

of the wheels, so we modeled custom 3D printed pulleys. The ratio of the 

gears is 3:2. We calculated the length of the gears and ordered the belts 

online. Because we used U-shaped tetrix extrusions, we designed the belt 

to fit inside and not limit the functionality of any other components. 

Because we had a lot of space opened up in the middle of the robot, we 

had no problems fitting the transport mechanism (see more in section 2.5). 
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In figure 2.3./c is visualized how the motor is mounted with custom 3D 

printed parts that are connected to the chassis. Figures 2.3./d and 2.3./e 

are photographs that show the mounting of our belt system. 
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2.4. Launcher 
Being the most essential part of this year's challenge, the launcher was 

naturally the primary focus of the robot's design. The first requirement our 

team unanimously agreed upon was a single flywheel that would propel 

the ring and give it rotational inertia which would increase its stability and 

accuracy. The next step was to figure out the loading of rings into the 

shooting position. In the end, we decided to load the rings into a 

gravity-based magazine before launching them (see figure 2.4./a).  

This would give us the possibility to load all three rings into position at the 

start without the inconvenience of stacking them onto the transport 

mechanism. 

 

From the hopper, the rings would take a circular path in contact with the 

flywheel, while being in a slight compression against a guardrail for more 

contact area with the flywheel. At the bottom of the hopper, there is a 

small servo-operated arm that pushes the bottom-most ring into the 

flywheel, which causes it to be launched. The bottom of the launcher is 
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made of acrylic, while the body is made out of 3D printed PLA. When the 

rings are in the hopper, they are secured by a protruding ridge that is on 

the boundary of the hopper  and the acceleration platform. This prevents 

the rings from accidentally slipping into the spinning flywheel (see figure 

2.4./a).  

The rings are meant to be launched strictly by the trigger servo. The entire 

launcher is angled at 30° relative to the ground. From 3D model 

inspections, with a straight line trajectory, the ring would reach the top of 

the goal when launched at this angle from the half-way field divider. 

When accounting for gravity, we estimate that the ring is going to go into 

the upper goal. This estimation confirmed itself in testing. The entire 

launcher is mounted at four points using custom 3D printed braces.  

 

However, the motor itself does not have high enough RPM to eject the ring 

into the goal. Our solution was to create a gearbox to increase the RPM of 

the flywheel. We mounted the motor to the launcher body and used metal 

gears mounted in custom 3d printed parts to increase the rpm of the 

launcher wheel by four times.  
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This solution worked perfectly. The launcher wheel now spins about 5000 

RPM and the trajectory the wheels are ejected matches with our 

calculations.  
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2.5. Transport mechanism 
To shoot the ring, the robot first has to pick it up. Facing this challenge, we 

designed a transportation mechanism and an arm that loads the rings into 

the launcher. The first task was to pick the ring up off the ground. Our 

solution is two wheels that spin in opposite directions. These wheels will 

pull the ring onto a transport belt that will funnel the rings into the 

launcher. 

The concept of the intake was clear from the beginning: we wanted to 

have the intake at the rear of the robot, with a transport belt that would 

deliver the rings into the hopper of the launcher. The belt had to be sloped 

at a reasonably shallow angle, to avoid problems with pulling the rings up. 

To get the rings onto the belt, we wanted to have a shaft with an opposite 

spin to the belt, which would rest outside of the robot. Our thought process 

was that the intake can be put into place and does not have to be removed 

for the rest of the match. Therefore, the entire arm that will be lowered 

does not have to be motorized. The idea was that the arm would crash 

down into place, hitting a solid piece of plastic that would transfer the 

shock into the chassis of the robot. The entire engagement of the arm was 

to be forced by gravity. The initial locking and release is ensured by a 

servo with a small wedge, that prevents the arm from falling preemptively 

(the initial prototype can be seen in figure 2.5./a).  
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The arm has a shaft with compliant wheels and a core hex motor attached 

at the end. These compliant wheels will be lifted approximately 1 cm off 

the ground, so that they have efficient contact with the ring on the floor. 

Aside from being compliant themselves, the arm is not resisted by 

anything other than gravity. Therefore, the ring intake will not force the 

robot off the ground. 

In the final version, we made the pieces more aesthetically pleasing and 

we added other functionality to the mounts (see figure 2.5/b). 

We had slight issues with our transportation belts. The initial concept 

counted on polyurethane belts, which immediately proved to have low 

friction, so we had to change them out for rubber wires. The side plates of 

the transport mechanism are designed to funnel the rings into the 

hopper==. Since the odometry components were in a convenient place, we 

joined up the parts and made the odometry holders function as upper 
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transport belt holders. The transport belt is covered up by an acrylic plate 

to ensure adhesion of the ring to the belt. 
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2.6. Odometry 
In order to know the precise position of the robot on the playing field, we 

needed to implement odometry encoders. The solution was placing three 

encoders reading data from their independent wheels.  

To increase data accuracy, we created a custom 3D printed odometry 

design with a seperate suspension system. Each encoder is set up to be 

pushed into the ground by rubber bands in order to maintain constant 

contact with the ground, even when driving over irregular terrain. Our first 

design is outlined in figure 2.6/a. Two axles are mounted to the robot’s 

chassis using a simple part. The odometry encapsule is then slid on the 

two axles and attached using rubber bands. The rubber bands pressure 

the odometry wheels into the ground and therefore maintain contact with 

the ground even when driving over irregular terrain. With this solution, the 

code can fully rely on position data from our odometry encoders, and use 

that for advanced control of the robot’s movement. 
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However, this solution did not work as well as we had hoped. There were 

many problems. The first big issue was with the odometry wheels moving 

sideways because the hole for the axles was too big. If we made the hole 

smaller, the axles wouldn’t be able to slide easily. This turned out to be a 

major problem for this design. 

 

Our first attempt at fixing this problem was to add two more axles to 

prevent them from rotating as can be seen in figure 2.6./b. However, this 

was not enough to fix our problem and it also did not cover the problem of 

the odometry rotating in the other way when the robot is moving 

sideways. In figure 2.6./c the tight position of the odometry wheels is 

shown.  
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After coming up with some new ideas, we decided that the best solution is 

a redesign of the odometry suspension. The new design uses only one of 

the original parts and the rest were scrapped. This design has axles 

attached to the wheels positioned vertically. The two axles slide in a rig 

attached to the main chassis of the robot. This solves our problems 

because it allows the odometry setup to only move vertically with almost 

no side movement. 
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Comparison 

of designs 

First design with 
horizontal axles 

Final design with vertical 
axles 

Positives ●​ Low profile- allows 
for parts above it 

●​ Rubber bands can 
be attached easily 

●​ No travel in any 
directions except for 
vertical 

●​ Adjustable pressure 
on wheels 

●​ Easier to assemble 

Negatives ●​ Some side 
movement  

●​ Can move freely on 
the Y axis of the 
robot. 

●​ Rubber bands must 
be tied around hole 

 

 

Once the two odometry 

encoders on the side were 

assembled, we were ready to 

tackle the final challenge of our 

odometry - position the third 

odometry encoder. The third 

odometry encoder is oriented 

sideways to the robot's direction 

of travel and measures the 

movement of the robot when 

moving sideways. We wanted to 

position the encoder along the 

robot’s axis of rotation so it 

doesn’t spin when the robot is 

rotating. This would ease 
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calculations for our algorithms. The final position was chosen to be very 

near the mounts for our motors (figure 2.6./f), so we had to change the 

part slightly to fit it in between the motor mounts. After testing, we found 

out that the distance between odometry wheels and the chassis was very 

small and the wheels were rubbing against the frame. 

 

 

To solve this problem, the only solution was to use the dremel and cut off a 

piece of the motor mount to make space for the third odometry encoder. 

After that the odometry no longer rubbed against the chassis and could 

move freely. 
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2.7. Handling arm 
The second game element that is used for scoring points is the wobble 

goal. To manipulate it, we decided to design a custom handling arm with 1 

axis of rotation. The first rough concept was a “V” shaped piece, where the 

rod of the wobble goal would be kept in place by a single “finger” operated 

by a servo motor(seen in 2.7./a).  

 

 

 

 

 

 

 

 

Upon further thought, we decided that a redesign was in order, mostly for 

aesthetic purposes. The result was a gripper with two opposable 

synchronised finger pieces. The fingers are slightly curved to help guide 

the rod into a firm grip. The fingers are designed to interlock (see figure 

2.7./c), so that they do not cause the wobble goal to twist under force. 

When gripped, the wobble goal rests in a dent in the backplate of the 

gripper, which prevents the rod from sliding into the sprockets. Only one of 

the fingers is powered by a servo motor. The other one is dependent 
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and inverted by a 1:1 gear ratio (see figure 2.7./b). When we printed out 

these parts, we encountered issues with construction. That was the basis 

for the third version of the gripper, which addressed the issues (see figure 

2.7./d).  

To ensure that the wobble goal is within the bounds of the robot at the 

start of the game, we decided to rotate the gripper and the shaft 180° with 

a servo. Initially, we opted to power the arm directly from the servo, but 

soon after, we discussed potential limitations of the servo´s torque output. 

We came to a conclusion that the servo might not be able to withstand the 

leverage exerted by the wobble goal at the end of the arm. Therefore, we 

added a 1:2 gear ratio to the servo, so that it can rotate the loaded arm 

more easily (see figure 2.7./d). The mechanism is placed on top of an 

aluminium rod that is covered by a plastic sleeve to prevent the rod from 

being a distracting element in an otherwise custom design (see figure 

2.7./e). The rod is mounted at the bottom with a custom piece. In the new 

version, this piece is thicker, to support the entire body properly.  

 

At the start of the game, the wobble goal with the arm will be within the 

dimensions of the robot. Upon start, the gripper and the upper shaft will 

be turned 180°. This will put it in position to manipulate the wobble goal in 

front of the robot. To achieve this motion, we modelled a component 

around REV Robotics gears to ensure the best power transfer from the 

servo to the beam.  
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2.8. Electronics 
Having figured out the functional parts of the robot, we went on to create 
a holder for the battery and control hubs. (figure 2.8./a)  
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This year we wanted the robot to have perfect cable management. To 
achieve this we did these things: 

●​ Chassis design - We designed the chassis with cable management in 

mind. The hollow structure of the tetrix shafts allows cables to fit inside it. 

Not only does it protect the cables from but it also hides them from sight - 

improving the overall appearance of the robot. 

●​ Shortening - Each cable was shortened to the exact length to prevent 

them from being loose, but also to save space. Some cables were tied 

together to shorten them, but most had to be cut and soldered. 

●​ Hub placement - We designed the holders for our two expansion hubs in 

such a way that all important ports are easily accessible. The position of 

the hubs also allows for cables to be mostly led through the central tetrix 

bar. 

 
Wire shortening process 
The wire shortening process is something we had to repeat many times 
this year. The cable of each motor and servo and encoder had to be 
shortened or sometimes extended to match our robot’s design. 
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1.​ First, we must measure how long the wire is supposed to be and 

mark how much we want to shorten it. 
2.​ We choose the position of the cut where we want to shorten the 

wire. Ideally this will be in a position where the cable will not 
undergo any strain and also be easily accessible. 

3.​ We cut the wire and strip the ends of the insulation to reveal the 
wire inside. 

4.​ The ends of each wire that we want to solder are twisted together so 
they hold together. 

5.​ Next we solder the two wires together 
6.​ Finally, the wires are wrapped with insulating tape to prevent any 

short circuits. 
7.​ As a final touch, we wrapped cables in black insulating tape to make 

them less noticeable. 
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3. Programming  
3.1. Intro 

If you take engineering as the body of our robot, then by that analogy, 

programming would be the brain.  

The code makes the robot act. Starting from simple actions, like driving 

around the field and shooting rings, to more complicated ones like 

calculating trajectories and analyzing camera images. This year we 

decided to tackle a big task of creating our own odometry algorithm. It is 

something we have wanted to do for years, but this year, given how much 

spare time we had due to COVID restrictions, it was the perfect time to 

finally take on this challenge. With this algorithm, our autonomous mode 

will become way more precise and it will also simplify many actions for 

our drivers in TeleOp. 

Our coach Daniel Lessner also plays a crucial part in our team. With his 

PhD in computer science, he provides valuable insight and makes our 

lessons very educational. 
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3.2. Set-Up 

3.2.1. Environment: 
From the beginning of our team we always used Android Studio for 

developing our robot.  

We also decided to use Android Studio because we wanted to have more 

flexibility with the repository as this year we created our own image 

recognition algorithm for detecting the skystone. More on that in the 

autonomous mode section. 

Furthermore, we use the linear op mode classes to develop our op modes. 

The process began with forking the new repository provided by First on 

Github and setting it as our own repository we can all collaborate on 

through Git and Github. Furthermore, we use 2 Motorola G5 phones that 

communicate through Wi-Fi direct to control our robot.  
 

3.3. Tele OP 
Teleop is the program, which is utilized during the Driver-Controlled Period, 

which is defined by the second game manual, as "The two minute time 

period in which the Drivers operate the Robots."  

-​ The most important part of the tele op mode is driving 

-​ The first thing we focused on as programmers was the mecanum 

wheels gamepad control algorithm.  

-​ To begin with, based on this diagram from roboteq.com, we decided 

to split our wheels into pairs. 
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As the non rotational movement of the 

wheels is only determined by the power of 

the wheels that are diagonal to each other, 

we decided to split them into two groups 

(the naming was a little random).  

We then decided on the control system 

that the left joystick will control the non-rotational movement (gamepad 1 

in 3.1.3 section).  

 

After this important step, creating the system was straightforward.  

 

Now when we gather information about the direction from the controller 

we can combine them and set the motors’ powers accordingly. We also 

added a speed coefficient which will make the controlling of the robot 

more precise for the drivers. Furthermore, we also clipped the power 

values to prevent any errors, which could result from imputing an invalid 

value into the motor power. 
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However, we still needed to implement turning for the robot. For that we 

used the x-axis on the right joystick.  

 

We created a turn variable that we then adjusted to the according motor 

powers. For turning to happen the wheels on one side have to have a 

different power than the wheels on the other side. Therefore, the turn 

value was added to the motors on the right side and subtracted to the side 

on the left. We then decided to clip the power again to prevent any errors. 

As soon as the chassis was finished we tested it out and it worked 

perfectly. 

Moreover, we set up speed coefficients for the driver to move more 

precisely. 

For this we decided to use the bumper buttons. The driver will press them 

when he wants to slow the driving down or to accelerate it.  

 

To make it work we used two if statements and the values were 

determined on the feedback from our drivers. 
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3.4. Autonomous strategy 
This year, the Ultimate Goal game offers many possible ways to gain 

points in the autonomous period. Upon inspecting the scoring rules, we 

decided that the most efficient way to gain points was to focus on 

shooting down the power shots. In addition to that, we also wanted to 

focus on delivering both of the wobble goals to the delivery area.  

 

Diagram of our autonomous plan. 

 

Firstly, while impacted by the pandemic and therefore had to work on our 

algorithms at home. The first algorithm we decided to work on was the 
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ring detection algorithm, which we managed to perfect at home (see next 

section 3.5). Once we were done with that, we moved on to creating an 

odometry algorithm that would utilize our new addition of encoders into 

the robot design (see section 3.6). 

By the time we completed the odometry algorithm, we were let back into 

the school, meaning we could start creating and testing paths for the 

robot. Upon deep consideration, we decided it would be most efficient to 

first analyze the number of rings stacked on the playing field, and then 

deliver the already preloaded wobble goal to the corresponding delivery 

area. After that, the robot would get into position to shoot all three 

powershots. 

At the start of the year, we had a long discussion on whether a machine 

learning algorithm or a hard coded one would be more efficient for 

detecting the number of stacked rings on the field. In the end we wrote 

down all the pros and cons for both the options and made our decision 

based on that. 

Comparison 

of algorithms 

Hardcoded algorithm Machine learning 

Positives Easier to setup - finding 
data to use as boundaries 
in the code is way faster 
than machine learning 

More reliable in different 
scenarios - with enough 
data, the algorithm would 
be very reliable under any 
conditions 

Negatives Various variables can 
skew the results - for 
example different lighting 
conditions or 
backgrounds 

Takes long - we would need 
to feed it a lot of data and 
pictures before it reaches 
reliable state 

 

After evaluating all of the pros and cons, we concluded that the best 

decision was to create a hard coded algorithm. Although reliability under 
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any light conditions would be nice, given that the contest takes place 

online, we will be competing from a place where we can control the 

lighting, thus deeming this benefit not so valuable. Furthermore, given 

that the competition will happen from home, we wouldn’t have many 

opportunities to gather data from different settings for the machine 

learning algorithm. It would also most likely take way longer to code, 

which we didn’t want because we wanted to mainly focus on perfecting 

our odometry algorithm. 
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3.5. Ring detection 
 
The first way to earn 15 points in the autonomous period is to deliver the 

wobble goals onto the correct target zone, determined by the amount of 

rings stacked. (See picture) 

 
To solve the problem of where our target zone is we decided to use a 

computer vision algorithm. 

A camera will be placed to face the location, where the rings are stacked. 

The phone will then take multiple pictures and analyze them. If a majority 

of the photo analyses match the same result the target zone will be 

chosen accordingly. 

 

Firstly, we decided to detect the distribution of red, blue and green in each 

picture and compare it to predefined values set for situations with 0, 1 or 3 

rings. The plan was to initially “feed” the program some already taken 

pictures of the rings on a playing field with different backgrounds, so that 

it could calculate average amounts of red, green and blue pixels in images 

with 0, 1 and 3 rings. Once we’ve reached satisfying values of the 

averages, we would then . The algorithm was very simple; however, it did 

not work well. The background, as well as the lighting situation in the 

room, skewed the red, green and blue pixel values too much for the results 

to be reliable. The scenery behind the playing field would often cover as 

much as half of the image, which meant that values taken from half of the 
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image were completely unpredictable. That meant that we had to set very 

broad boundaries for the red, green and blue pixel values, making the 

algorithm too imprecise and unreliable to use. The lighting situation in the 

room played a surprisingly large role in the precision of the algorithm. The 

difference  

 

Therefore, we decided to approach the problem from another perspective. 

We knew the rings were always going to be orange and the background 

gray. So, we decided to score pictures based on the amount of orange. We 

wrote a function which adds up all the orange pixels in the image from the 

camera and came to conclude that the differences between a picture with 

0, 1 or 3 rings are very easily distinguishable, meaning that we can easily 

and very precisely determine how many rings are in front of the robot the 

playing field just from the one number. 

 

 
To ensure maximum precision, we plan on running the function multiple 

times, to minimize the possibility of a single skewed result ruining our 

entire autonomous period. That is why we want it to execute as quickly as 

possible, so we also added a few lines of code which measure the time it 

takes for the measure() function to execute. After some tweaking, we 

reached a steady speed of around 300 ms, with which we are satisfied. 
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The following image shows the output from this code, when the camera is 

pointed at a field with 1 ring. The result shows the value of int score, which 

is the amount of orange pixels detected on the image from the camera. We 

have found that when pointed at a playing field with a certain amount of 

rings, the result number will always stay within a certain margin, 

according to the number of the rings, which is why we can use this number 

to precisely evaluate how many rings are present on the field. 
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3.6. Encoders & Odometry 
This year our team upgraded the robot with encoders, which are sensing 

devices that convert rotary or linear motion (mechanical movement) into a 

digital signal that can be analysed. As mentioned in the engineering 

section we used wheel encoders that interpret the rotary motion from the 

wheels into digital information.  

A rotational encoder generates the data from a disk  that is attached to the 

same axis as the wheel that is tracked. The disk  has evenly spaced 

contact zones and two other contacts A and B. Every-time two contacts 

touch, a signal is generated. Two signals from the two different sources are 

created so that the direction of the rotation can be determined. Through a 

circuit, the signal is transformed into a digital numerical value. Based on 

how many contacts were made a number either increases or decreases, 

depending on the direction of rotation. For example, if the disk had 360 

contacts for one full rotation the value would read 360. If the disk was 

then rotated by half a rotation in the opposite direction then the value 

would decrease to 180. By using this value, it is possible to calculate the 

physical displacement of the robot.  

 

 

To calculate the displacement of the wheel that the encoder is attached to, 

it is important to know the diameter (d) of the wheel, for the circumference 

(C) to be calculated. ​𝐶 = 𝑑π

Furthermore, as in the previous example, I will assume that the encoder 
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disk has 360 contacts so that one rotation translates to a number of 360. 

The current number of contacts made will be represented by the variable 

a. Therefore, the displacement travelled (dt) by the wheel can be 

calculated by using the equation of:  The variable is divided 𝑎
360 * 𝐶 = 𝑑𝑡

by 360 to get the fraction of how much the disk has been rotationally 

displaced. Later, when multiplied by the circumference, the variable (dt) for 

displacement is obtained. 

 

 

 

For the parallel wheel tracking, arcs can be used to calculate the change in 

displacement. It is important to mention that even driving in a straight line 

can be considered a movement in an arc with a radius of infinity.  

 

The figure demonstrates an example of how wheel displacement 

can be expressed through an arc of length. The computer that will be 

doing the calculations, will use the values from the encoders every 
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amount of milliseconds (depends on the speed of the computer). 

Therefore, the algorithm will be calculating the change in 

displacement between two instances in time or also called “frames”.  

The central displacement dC is equal to the average of dR 𝑑
𝐶

=
𝑑

𝑟 
+ 𝑑

𝐿

2

and dL.  

The equation for theta works out to be: Theta is the angle θ =
𝑑

𝑅
−𝑑

𝐿

𝐷

the robot turners during the frame.  

 

 

 

 
 

There are some relations that should be pointed out. Firstly, a 

quadrilateral is made of the two radii and the two tangent lines. 

39 



 

Therefore, two right angles are present in the quadrilateral. Making 

the angle relation:  α = θ
2

 

Now, using right triangle trigonometry, it is possible to find delta X 

and delta Y by assuming that is the hypotenuse. This estimate is 

usually enough to achieve optimal precision as the computer can do 

these calculations hundreds of times per second. Therefore, in a 

time frame of a few milliseconds, the arc travelled is so small that it 

can be considered a straight line. However, over a longer period of 

time the error from this assumption could begin to accumulate and 

become significant. The tracking should be maximally precise and 

this is especially relevant if a slower computer is used. Fortunately, 

using mathematics, the exact value of the hypotenuse can be found. 

 

By knowing  and  it is possible to find by using the cosine rule.  θ 𝑟
𝐶
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 𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 𝑐𝑜𝑠𝐶

In this case of an isosceles triangle,  and  are equal to . 𝑎 𝑏 𝑟
𝐶

 ℎ = 2𝑟2
𝐶

− 2𝑟2
𝐶
𝑐𝑜𝑠θ

However, it is important to check whether is equal to 0, which θ

means the robot is driving straight, as otherwise h would then equal 

0 as well. The algorithm checks  if  equals to 0 and if it does, then h θ

set to . When the robot is driving straight,  is a straight line and 𝑑
𝐶

𝑑
𝐶

therefore, is the same as h.  

It is important to add the initial angle , which is the angle the robot Φ
𝑖

was oriented in, at the beginning of the time frame, in order to 

preserve the previous changes in orientation of the robot. 

 ∆ 𝑥 =  ℎ ×  𝑐𝑜𝑠(Φ
𝑖

+ α)

 ∆ 𝑦 =  ℎ ×  𝑠𝑖𝑛(Φ
𝑖

+ α)

 

Perpendicular third wheel correction 

As described before the robot has a third perpendicular tracking 

wheel in the middle. Because this wheel is exactly in the middle and 

is perpendicular, it does not rotate when the robot turns or drives 

straight. However, if the robot is pushed to the side or the robot is 

using mecanum wheels that allow it to drive sideways, then the two 

parallel wheels are unable to detect that. But, the third 

perpendicular wheel detects this shift.  
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As seen in figure 8, dS and h can be considered vectors. Because the 

wheel is placed perpendicularly to the two parallel wheels vectors 

dS and h are also perpendicular. 

When a right angle triangle with dS as a hypotenuse is drawn the 

angle at the beginning of the vector dS is the same as the angle 

alpha, shown previously. Therefore, to account for the additional 

displacement, the shift of the robot adds to the overall displacement, 

basic right angle triangle trigonometry can be used almost in the 

same way as with the parallel wheels. The only difference is the 

switch of cos and sin because as seen in figure 8 the angle faces the 

x displacement axis. 

 ∆ 𝑥
𝑠

=  𝑑
𝑆

×  𝑠𝑖𝑛(Φ
𝑖
 +  α)

 ∆ 𝑦
𝑠

=  𝑑
𝑆

×  𝑐𝑜𝑠(Φ
𝑖
 +  α)

So, when updating the global x, y and  coordinates of the robot in Φ

a cartesian system, both the parallel wheels and the perpendicular 
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wheel’s tracking information has to be added, together with the 
displacement from the last calculation: 

 

 

 

 

 

​
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https://www.codecogs.com/eqnedit.php?latex=x%20%3D%20x%20%2B%20%5CDelta%20x%20%2B%20%5CDelta%20x_s#0
https://www.codecogs.com/eqnedit.php?latex=y%20%3D%20y%20%2B%20%5CDelta%20y%20%2B%20%5CDelta%20y_s#0


 

3.7. Path design  
With our implemented odometry algorithm we wanted to be able to 

quickly design a path that the robot can follow both in autonomous and 

tele-op modes. To improve our web development skills we decided to 

create a web application that would use the same spline algorithm to 

graphically represent a path in real-time we could adjust and then export 

into our robot. 

 

To create our path we decided to use multiple Catmull-Rom splines 

connected together. We wanted the user to design a path just by moving 

key points around. 

  

The frame updates 60 times per second and all the points are draggable. 

The points can be added or removed using the plus and minus buttons on 

the bottom. The algorithm then interpolates between these points in a 

seamless manner and generates the curves between. When the path is 
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finished the coordinates of the points are exported and when imputed into 

the robot, it will follow the same path.  
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4. Logistics 
4.1. Discord Server 
COVID restriction made in-person meetings impossible for most of the 

year. Due to that, we had to improvise and move our meetings online. We 

decided to choose Discord for our online meetings for many reasons. For 

one, it was already used by many of our members, meaning that they 

were already familiar with its use and controls. Discord works through a 

server, in which the admin can create different voice and text channels. In 

our robotics server, we had general voice channels for everybody as well 

as separate channels for designers and programmers. The same was the 

case for our text channels, which we used to arrange times for calls and 

share files. 

 

Therefore, even despite the  pandemic we were able to have weekly 

meetings on Monday and Wednesday. Discord provided us with a great 

environment to collaborate! 
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4.2. Budget sheet 
4.3. One of our initial goals was to be more organized. Therefore, the first 

thing we did when we discovered that we will be receiving more money 

from school for our club is a Google budget sheet. We wrote down a list of 

all potential items that we would like to buy and added links to places 

where to buy. During this process we discovered how budgets work and 

that we have to deal with expenses carefully. It was a new and 

enlightening experience for us because we never had to deal with such 

budgets before. Moreover, we also divided these items into categories. 

One of these categories was 

also the budget for team 

budgeting for travelling to 

international competitions. 

This is a screenshot from our 

budget sheet that portrays 

every item we ever considered 

buying. The first column 

determines the section the 

product is from. The second 

column is the name of the 

product. The third column is the 

desired amount, then there is 

the price per article and overall 

price. The last column shows the status, if the item was ordered or not. 

Overall, we have over 50 articles in the list. From which 45 have been 

bought and we now have them in our workshop.  

For the following season 2020/2021, we had an additional budget of 1000 

euro which we used mainly for 3D filaments and minor purchases . 
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4.3. Finances 
2019/2020 
To begin with, most of our finances come from our school that created 
different budgets for specific needs of the club. We also contacted some 
sponsors and attempted to work on our outreach while also increasing our 
budget. 

 

Budget  Amount 

Equipment  $2200 (50000Kč) 

Tournaments $5000 (120000Kč) 

Sponsors Specific items or future 
collaboration 

 
2020/2021 

 

Budget  Amount 

Equipment  $1000 (25000Kč) 

Tournaments $3000 (62000Kč) 
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